

# Climate Change-Related Temperature Impacts on Warm Season Heat-Mortality: A Proof-of-Concept Methodology Using BenMAP

May 12, 2010 Xi'an, PR China

International Specialty Conference Air & Waste Management Association

A. Scott Voorhees United States Environmental Protection Agency

#### Co-Authors



- ▶ Neal Fann
- ► Charles Fulcher
- ► Patrick Dolwick
- ► Bryan Hubbell
- ► Britta Bierwagen
- ► Philip Morefield

### Project goals



- Near-term goals
  - Build technical capacity in BenMAP model
  - Develop a proof-of concept approach to estimating temperature-mortality impacts
- ▶ Longer-term goals
  - Quantify temperature-mortality impacts associated with climate change scenarios
  - Estimate joint climate and criteria pollutant impacts

### Background



- Six factors define the human thermal environment
  - Air temperature
  - Radiant temperature (e.g., sunlight, other heat sources)
  - Humidity
  - Air movement
  - Metabolic heat of activity
  - Clothing
- Body heat storage triggers thermoregulation system
  - Efforts to increase heat loss stress the body hyperthermia may result
- Heat is primary weather-related cause of US mortality (more than hurricanes, lightning, tornadoes and floods combined)
- Estimated 2~6°C increase by end of century (Intergovernmental Panel on Climate Change)
  - ▶ Heat islands may see 5~11°C
- Both temperature and heat waves expected to increase (US Global Change Research Program)



### **Component 1: Population Exposure**



- Using standard Woods & Poole projections of county-level population
  - Allocate population to climate modeling grid
  - W&P population projected to 2030
  - BenMAP performs linear extrapolation for subsequent years to 2050
- BenMAP matches temperature change with population to estimate exposure

### **Component 2: Health Impact Functions**

| Authors                                                                      | Location                                                      | Impact                                              | Relative Risk or<br>Percent                            | Conditions                                                                     | Population |
|------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|------------|
| Basu, Feng and<br>Ostro (2008) – CA<br>Office of Env Haz<br>Assess; UC Davis | Nine California<br>counties, 1999-<br>2003                    | All cause<br>mortality,<br>excluding<br>accidents   | 2.3% per 5.55°C                                        | mean daily apparent<br>T, warm season only                                     | All ages   |
| Basu and Ostro<br>(2008) – CA OEHA                                           | Nine California<br>counties, 1999-<br>2003                    | All cardiovascular deaths                           | 2.6% per 5.55°C                                        | mean daily apparent<br>T, warm season only,<br>unlagged                        | All ages   |
| Medina-Ramón and<br>Schwartz (2007) -<br>Harvard                             | 42 random large<br>US cities, 1989-<br>2000                   | All cause mortality                                 | 0.43% per 1 °C                                         | minimum threshold<br>>17℃, 2 day<br>cumulative                                 | All ages   |
| Zanobetti and<br>Schwartz (2008) -<br>Harvard                                | Nine US cities in<br>warm and cold<br>climates, 1999-<br>2002 | All cause<br>mortality,<br>excluding<br>accidents   | 1.8% per 5.55°C<br>2.7% per 5.55°C                     | mean daily apparent<br>T, warm season only,<br>adjusted for PM2.5<br>and ozone | All ages   |
| Basu, Domenici and<br>Samet (2005) – CA<br>OEHA; Johns Hopkins               | 20 largest US<br>cities, 1992                                 | All cardiovascular<br>and all respiratory<br>deaths | 1.02~1.10 per<br>5.55℃<br>(five geographic<br>regions) | mean daily apparent<br>T, summer only                                          | Ages 65-99 |

### Component 3: Temperature modeling

- Air quality modeling group modeled meteorological changes (including temperature) related to a climate scenario
  - ▶ IPCC "A1B" emissions scenario
  - EPA's Climate Impact on Regional Air Quality (CIRAQ) program
    - ► NASA's global circulation model GISS-II to simulate climate for period 1950-2055
  - Results downscaled by DOE's PNNL to 36-km grid using regional climate model MM5 for current (ca. 2000) and future (ca. 2050) conditions
- CIRAQ downscaled meteorology used in the ORD/NCEA report addressing climate change impacts on ozone

### **Temperature Aggregation Methodology**





#### Results



- ▶ Summer and winter season temperatures ~2°C higher
- Incidence of heat-related mortality in warm season
  - ▶ 0.1% of all cause mortality
  - 0.9% of cardiovascular disease mortality
  - ▶ 0.7% of nonaccidental deaths
- Various factors influence results
  - Warm season vs. heat wave; other seasons
  - Displacement ("harvesting") between seasons or not
  - Spatial & temporal heterogeneity
  - Acclimatization (biophysical desensitization) & adaptation (change in behavior patterns)
  - Impact of air pollution (e.g., ozone higher concentrations, more episodes, enhanced effect with higher temperature)

### Change in Summer Season Daily Average Temperature (Higher 2050 Levels - Lower 2000 Levels)



#### Numbers of Modeled Grid Cells And Associated 1-Hour Temperature Ranges



Number of Cells ≥ 32<sup>o</sup> C (out of 15,912 modeled cells)

|                    | 2000     | 2050         |
|--------------------|----------|--------------|
| 1 hour<br>max      | 18 cells | 865<br>cells |
| 24<br>hour<br>mean | 0 cells  | 255<br>cells |

## Estimated Warm Season Temperature-Related Mortality



## Influence of Population Assumptions on Results



#### **Lessons Learned**



- Climate-induced health impacts are highly sensitivity to population projections
  - Absolute change in temperature as important as location of susceptible populations
  - The longer the time horizon, the greater the divergence among projections
  - Future analyses should consider multiple population projections
- Temperature-mortality effects are sensitive to location
  - Location affects susceptibility, acclimatization and adaptation
  - National pooled risk estimates may poorly account for risk at specific cities
- Current approach not capturing joint impacts
  - Interaction of temperature and pollution or multiple pollutants in health impact assessment not addressed
  - Joint impacts may be synergistic

### Next steps



- Identify "critical" factors that drive analytical results
  - Mortality & morbidity
  - Warm season vs. heat wave; other seasons
  - Displacement ("harvesting") or not
  - Sensitive populations elderly, infants, all
  - All cause mortality or cardiovascular & respiratory
  - Spatial & temporal heterogeneity
  - Acclimatization & adaptation
  - Impact of air pollution (e.g., ozone higher concentrations, more episodes, enhanced effect with higher temperature)
- Refine health impact functions
  - Consider estimating reduction in mortality from increases in wintertime minimum temperatures
- BenMAP enhancements
  - Apply risk estimates by city
  - Quantify joint impacts of temperature and air pollution
  - Incorporate "temperature rollback" feature

### Leapfrogging Lessons



- Heat-related health impacts can be quite region- and seasonspecific
- A holistic approach to estimating impacts is important
- Urban populations may be at particular risk due to heat islands



### THANK YOU! 谢谢

Dr. Scott Voorhees
Environmental Scientist
Climate, International and Multimedia Group
U.S. Environmental Protection Agency
Mail Code C504-04
Research Triangle Park, North Carolina 27711
voorhees.scott@epa.gov

Mr. Dale Evarts
Group Leader
Climate, International and Multimedia Group
U.S. Environmental Protection Agency
Mail Code C504-04
Research Triangle Park, North Carolina 27711
evarts.dale@epa.gov

http://www.epa.gov/ttn/ecas/benmodels.html