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» Near-term goals
Build technical capacity in BenMAP model

Develop a proof-of concept approach to estimating
temperature-mortality impacts

» Longer-term goals

Quantify temperature-mortality impacts associated with climate
change scenarios

Estimate joint climate and criteria pollutant impacts



Background (&

» Six factors define the human thermal environment
Air tfemperature
Radiant temperature (e.g., sunlight, other heat sources)
Humidity
Air movement
Metabolic heat of activity
Clothing
» Body heat storage triggers thermoregulation system
Efforts to increase heat loss stress the body — hyperthermia may result

» Heat is primary weather-related cause of US mortality (more than
hurricanes, lightning, tornadoes and floods combined)

» Estimated 2~6°C increase by end of century (Intergovernmental
Panel on Climate Change)
Heat islands may see 5~11°C

» Both temperature and heat waves expected to increase (US
Global Change Research Program)
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Component 1: Population Exposure { &}

» Using standard Woods & Poole projections of county-level
population
Allocate population to climate modeling grid
W&P population projected to 2030

BenMAP performs linear extrapolation for subsequent years to
2050

» BenMAP matches temperature change with population to
estimate exposure



Component 2: Health Impact Functions

Authors Location Impact Relative Risk or Conditions Population
Percent

Basu, Feng and Nine California All cause 2.3% per 5.55°C mean daily apparent All ages
Ostro (2008) - CA counties, 1999- mortality, T, warm season only
Office of Env Haz 2003 excluding
Assess; UC Davis accidents
Basu and Ostro Nine California All cardiovascular 2.6% per 5.55°C mean daily apparent All ages
(2008) — CA OEHA counties, 1999- deaths T, warm season only,

2003 unlagged
Medina-Ramén and 42 random large All cause mortality 0.43% per 1°C minimum threshold All ages
Schwartz (2007) - US cities, 1989- >17°C, 2 day
Harvard 2000 cumulative
Zanobeftti and Nine US cities in All cause 1.8% per 5.55°C mean daily apparent All ages
Schwartz (2008) - warm and cold mortality, 2.7% per 5.55°C T, warm season only,
Harvard climates, 1999- excluding adjusted for PM2.5

2002 accidents and ozone
Basu, Domenici and 20 largest US All cardiovascular 1.02~1.10 per mean daily apparent Ages 65-99
Samet (2005) - CA cities, 1992 and all respiratory 5.55°C T, summer only

OEHA; Johns Hopkins

deaths

(five geographic
regions)
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» Air quality modeling group modeled meteorological changes
(including temperature) related to a climate scenario

IPCC "ATB"” emissions scenario
EPA’s Climate Impact on Regional Air Quality (CIRAQ)
program
» NASA'’s global circulation model GISS-Il to simulate
climate for period 1950-2055

Results downscaled by DOE’s PNNL to 36-km grid using
regional climate model MMS for current (ca. 2000) and
future (ca. 2050) conditions

» CIRAQ downscaled meteorology used in the ORD/NCEA
report addressing climate change impacts on ozone



Temperature Aggregation Methodology

Temperature Modeling

IPCC’s AIB Emissions
Scenario

NASA’s GISS I
Global circulation model

Penn State’s MM5
Regional climate model

CMAQ’s Meteorology
Chemistry Interface Process

NN/

Optional adjustment for
humidity

Data Aggregation
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Resulis

» Summer and winter season temperatures ~2°C higher

» Incidence of heat-related mortality in warm season
0.1% of all cause mortality
0.9% of cardiovascular disease mortality
0.7% of nonaccidental deaths

» Various factors influence results
Warm season vs. heat wave; other seasons
Displacement (“harvesting”) between seasons or not
Spatial & temporal heterogeneity

Acclimatization (biophysical desensitization) & adaptation
(change in behavior patterns)

Impact of air pollution (e.g., ozone - higher concentrations, more
episodes, enhanced effect with higher temperature)



Change in Summer Season Daily Average Temperature (Higher
2050 Levels - Lower 2000 Levels)

er season average daily mean temperature (2050 levels - 2000 levels)

(celsius)
323 10 2.62
= 261 t0 2.37
236 to 211
2.10to 1.83
1.82 to 1.33




Numbers of Modeled Grid Cells And Associated

1-Hour Temperature Ranges

Number of Modeled 36-km Grid Cells (1999-2003)
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Estimated Warm Season Temperature-Related
Mortality

Zanobetti and Schwartz 2008 (all
ages)
Nonaccidental

Basu & Ostro 2008 (all ages)
Cardiovascular disease

Basu & Ostro 2008 (65+ yrs)
Nonaccidental

Heat-Mortality Study

Basu, Feng & Ostro 2008 (all ages)
Nonaccidental

Medina-Ramon & Schwartz 2007 (all
ages)
All cause

0 5,000 10,000 15,000 20,000 25,000 30,000
# Cases Mortality

B Apparent Temperature Method 1 B Apparent Temperature Method 2 @ Actual Temperature Method 1 @ Actual Temperature Method 2 ‘

All functions based on apparent temperature except Medina-Ramon & Schwartz 13




Percentage difference from central estimate

Influence of Population Assumptions on
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Lessons Learned

» Climate-induced health impacts are highly sensitivity o
population projections
Absolute change in temperature as important as location of
susceptible populations

The longer the fime horizon, the greater the divergence among
projections

Future analyses should consider multiple population projections
» Temperature-mortality effects are sensitive to location
Location affects susceptibility, acclimatization and adaptation
National pooled risk estimates may poorly account for risk at
specific cities
» Current approach not capturing joint impacts

Interaction of temperature and pollution or multiple pollutants in
health impact assessment not addressed

Joint impacts may be synergistic



Next steps

» |dentify “critical” factors that drive analytical results
Mortality & morbidity
Warm season vs. heat wave; other seasons
Displacement (“harvesting”) or not
Sensitive populations — elderly, infants, all
All cause mortality or cardiovascular & respiratory
Spatial & temporal heterogeneity
Acclimatization & adaptation

Impact of air pollution (e.g., ozone - higher concentrations, more
episodes, enhanced effect with higher temperature)

» Refine health impact functions

Consider estimating reduction in mortality from increases in
wintertime minimum temperatures

» BenMAP enhancements
Apply risk estimates by city
Quantify joint impacts of temperature and air pollution

Incorporate “temperature rollback” feature 6



Leapfrogging Lessons (&

» Heat-related health impacts can be quite region- and season-
specific

» A holistic approach to estimating impacts is important

» Urban populations may be at particular risk due to heat islands
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